×

Recommended by

Indexed by

Phase-field investigation of lithium electrodeposition under different applied overpotentials and operating temperatures

Joonyeob Jeon1,2*, Gil Ho Yoon2, Tejs Vegge1, Jin Hyun Chang1,3*

1 Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

2 Department of mechanical engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea

3 PhaseTree ApS, Copenhagen, Denmark

* Corresponding authors emails: revol2236@gmail.com, jchang@dtu.dk
DOI10.24435/materialscloud:pb-vt [version v1]

Publication date: Feb 01, 2022

How to cite this record

Joonyeob Jeon, Gil Ho Yoon, Tejs Vegge, Jin Hyun Chang, Phase-field investigation of lithium electrodeposition under different applied overpotentials and operating temperatures, Materials Cloud Archive 2022.19 (2022), https://doi.org/10.24435/materialscloud:pb-vt

Description

Despite the high promise of Li-metal-based batteries, its commercialization has been hampered due to the formation of dendrites that lead to mechanical instability, energy loss and eventual internal short circuits. The provided dataset consists of the phase-field simulation results for investigating the effect of applied overpotential and operating temperature on dendrite growth. These data are used for elucidating the correlation of overpotential and temperature with the surface modulation during electrodeposition. The simulation cell consists of a Li metal anode and 1M LiPF6 in EC:DMC (1:1), and the electrodeposition process was simulated under the applied overpotential ranging from 0.30 V to 0.44 V with a 0.02 V increment at temperatures from 268 K and 333 K with a 5 K increment. The data contains order parameter, chemical potential and overpotential. The supplied Python script can compute the surface tortuosity, average and maximum Li heights and dendrite height at a given temperature, overpotential and time step.

Materials Cloud sections using this data

No Explore or Discover sections associated with this archive record.

Files

File name Size Description
268K.h5
MD5md5:187795e3f305cd50ad08a2ba1cc9c7e2
4.9 GiB Simulation data for T = 268 K (HDF5 format)
273K.h5
MD5md5:a3b383200b1f3b9e9280e577afdf688d
3.4 GiB Simulation data for T = 273 K (HDF5 format)
278K.h5
MD5md5:2cf5884e6218ab2e584b1a8f816fc16b
2.7 GiB Simulation data for T = 278 K (HDF5 format)
283K.h5
MD5md5:f95d3a436a2bfef83f38174afb3cf6e5
2.1 GiB Simulation data for T = 283 K (HDF5 format)
288K.h5
MD5md5:ebd7c2b5ef57594da05ed81cafbd26ab
1.7 GiB Simulation data for T = 288 K (HDF5 format)
293K.h5
MD5md5:0eac09382a92820f9bc07b480494a0a9
1.4 GiB Simulation data for T = 293 K (HDF5 format)
298K.h5
MD5md5:ff06e51e52183654e5ba67bd03458ff0
1.2 GiB Simulation data for T = 298 K (HDF5 format)
303K.h5
MD5md5:15e1f6672e57658797de47a0c8e1dc54
1.0 GiB Simulation data for T = 303 K (HDF5 format)
308K.h5
MD5md5:593d0ff7f37cdb45f780ed7eb3538a80
932.1 MiB Simulation data for T = 308 K (HDF5 format)
313K.h5
MD5md5:30e72533a33f389e493a0836ebcf806a
796.7 MiB Simulation data for T = 313 K (HDF5 format)
318K.h5
MD5md5:5616e449de5e4dd954e181f8c760888d
687.0 MiB Simulation data for T = 318 K (HDF5 format)
323K.h5
MD5md5:4733cc7e19aa2c67e252063920aea1a9
598.9 MiB Simulation data for T = 323 K (HDF5 format)
328K.h5
MD5md5:ff8e1ecd42453fddae36c5b1884cff64
523.9 MiB Simulation data for T = 328 K (HDF5 format)
333K.h5
MD5md5:b67762937a1a24321f8490cb10b3ea8e
449.8 MiB Simulation data for T = 333 K (HDF5 format)
postprocess.py
MD5md5:6f4a3d8ddaa938c2f5546ea61ee8bb4e
13.4 KiB Python script for postprocessing and visualization
README.md
MD5md5:65a01a77f3c515174386305342556dfd
3.3 KiB README file

License

Files and data are licensed under the terms of the following license: Creative Commons Attribution 4.0 International.
Metadata, except for email addresses, are licensed under the Creative Commons Attribution Share-Alike 4.0 International license.

Keywords

BIG-MAP Lithium Interfaces Anode dendrites phase field

Version history:

2022.19 (version v1) [This version] Feb 01, 2022 DOI10.24435/materialscloud:pb-vt